Relative Crystallinity of Plant Biomass: Studies on Assembly, Adaptation and Acclimation
نویسندگان
چکیده
Plant biomechanical design is central to cell shape, morphogenesis, reproductive performance and protection against environmental and mechanical stress. The cell wall forms the central load bearing support structure for plant design, yet a mechanistic understanding of its synthesis is incomplete. A key tool for studying the structure of cellulose polymorphs has been x-ray diffraction and fourier transform infrared spectroscopy (FTIR). Relative crystallinity index (RCI) is based on the x-ray diffraction characteristics of two signature peaks and we used this technique to probe plant assembly, adaptation and acclimation. Confocal microscopy was used to visualize the dynamics of cellulose synthase in transgenic Arabidopsis plants expressing a homozygous YFP::CESA6. Assembly: RCI values for stems and roots were indistinguishable but leaves had 23.4 and 21.6% lower RCI than stems and roots respectively. Adaptation: over 3-fold variability in RCI was apparent in leaves from 35 plant species spanning Ordovician to Cretaceous periods. Within this study, RCI correlated positively with leaf geometric constraints and with mass per unit area, suggestive of allometry. Acclimation: biomass crystallinity was found to decrease under conditions of thigmomorphogenesis in Arabidopsis. Further, in etiolated pea hypocotyls, RCI values also decreased compared to plants that were grown in light, consistent with alterations in FTIR cellulose fingerprint peaks and live cell imaging experiments revealing rapid orientation of the YFP::cellulose synthase-6 array in response to light. Herein, results and technical challenges associated with the structure of the cell wall that gives rise to sample crystallinity are presented and examined with respect to adaptation, acclimation and assembly in ecosystem-level processes.
منابع مشابه
Photosynthetic and morphological acclimation of seedlings of tropical lianas to changes in the light environment.
UNLABELLED • PREMISE OF THE STUDY Few studies have analyzed the physiological performance of different life stages and the expression of ontogenetic niche shifts in lianas. Here, we analyzed the photosynthetic and morphological acclimation of seedlings of Stigmaphyllon lindenianum, Combretum fruticosum, and Bonamia trichantha to distinctive light conditions in a tropical dry forest and compar...
متن کاملInfluence of arbuscular mycorrhizal colonization on whole‐plant respiration and thermal acclimation of tropical tree seedlings
Symbiotic arbuscular mycorrhizal fungi (AMF) are ubiquitous in tropical forests. AMF play a role in the forest carbon cycle because they can increase nutrient acquisition and biomass of host plants, but also incur a carbon cost to the plant. Through their interactions with their host plants they have the potential to affect how plants respond to environmental perturbation such as global warming...
متن کاملPhysiological responses of two tomato (Lycopersicun esculentum M.) cultivars to Azomite fertilizer under drought stress.
This study was conducted in order to investigate the effect of drought stress and Azomite fertilizer on some physiological traits of two tomato (Lycopersicon esculentum M.) cultivars (izmir and Izabella). A randomized complete design with factorial arrangement with three replications was used. Treatments consisted of three levels of irrigation including FC (control), FC (mild drought stress), a...
متن کاملDrought adaptations in wild barley (Hordeum spontaneum) grown in Iran
Wild barley contains a wide genetic diversity and therefore is adaptable to all kinds of harsh environments. The aim of this research was to determine the extent of drought stress adaptation within Hordeum spontaneum L. genotypes from different climates of Iran. From the primary population of 193 genotypes, a core set consisting of 18 genotypes, were selected based on the highest squared Euclid...
متن کاملAdaptation of the Cyanobacterium fischerella sp. ISC 107 to the combined effects of pH and carbon dioxide concentration. Mahboobeh Rajabnasab1, Ramezan Ali Khavari-nejad1*, Shademan Shokravi2 and Taher Nejadsattari1
The aim of this study was to investigate the adaptation of the cyanobacterium Fischerella sp. ISC 107to combined effects of carbon dioxide concentration, acidic and alkalinity. Axenic strain was incubated in BG0-11 medium. Carbon dioxide treatments were limited and relatively non-limited. Acidic (pH 5), neutral (pH7), and alkaline (pH 9) conditions were employed in each treatment. Survival, gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008